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Abstract�The law of thin numbers is a Poisson approximation
theorem related to the thinning operation. We use information
projections to derive lower bounds on the information divergence
from a thinned distribution to a Poisson distribution. Conditions
for the existence of projections are given. If an information pro-
jection exists it must be an element of the associated exponential
family. Exponential families are used to derive lower bounds
on information divergence and lower bounds on the rate of
convergence in the law of thin numbers. A method of translating
results related to Poisson distributions into results related to
Gaussian distributions is developed and used to prove a new
non-trivial result related to the central limit theorem.

I. INTRODUCTION

Approximation by a Poisson distribution is a well studied
subject and a careful presentation can be found in [1]. Con-
nections to information theory have been established in [2],
[3]. For most values of the parameters, the best bounds on
total variation between a binomial distribution and a Poisson
distribution with the same mean have been proved by ideas
from information theory via Pinsker's inequality [4], [5], [6],
[7]. Recently [8] the idea of thinning a random variable was
introduced and used to formulate and prove a Law of Thin
Numbers that is a way of formulating the Law of Small
Numbers (Poisson's Law) so that it resembles formulation
of the Central Limit Theorem for a sequence of independent
identically distributed random variables. Here these ideas will
be developed further. There are three main reasons for devel-
oping these results. The �rst is to get a lower bound for the
rate of convergence in the Law of Thin Numbers, the second
is to use these to get new inequalities and asymptotic results
for the central limit theorem, and the last is to develop the
general understanding and techniques related to information
divergence and information projection. Many of our calcu-
lations involve Poisson-Charlier polynomials and are quite
lengthy. Many details have been left out and short versions of
the proofs can be found in the appendix. We hope eventually
to be able to tell which aspects of important theorems for
continuous variables like the Entropy Power Inequality that
can be derived from results for discrete variables and which
aspect are essentially related to continuous variables. The
relevance for communication will not be discussed here, see
[8] for some related results.

II. PRELIMINARIES ON THINNING
Let P denote a distribution on N0. For � 2 [0; 1] the �-

thinning of P is the distribution T� (P ) given by

T� (P ) (k) =
1X
l=k

P (l)

�
l

k

�
�k (1� �)l�k :

If X1; X2; X3; ::: are independent identically distributed
Bernoulli random variables with success probability � and Y
has distribution P independent of X1; X2; � � � then

YX
n=1

Xn

has distribution T� (P ) : Obviously the thinning of an indepen-
dent sum of random variables is the convolution of thinnings.
We shall use the notation xk = x (x� 1) � � � (x� k + 1) : The
factorial moments of an �-thinning are easy to calculate
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�
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�
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�
:

Thus, thinning scales the factorial moments in the same way
as ordinary multiplication scales the ordinary moments.
Thinning transforms binomial distributions into binomial

distributions, Poisson distributions into Poisson distributions,
geometric distributions into geometric distributions and nega-
tive binomial distributions into negative binomial distributions
[8]. A distribution on N0 is said to be ultra log-concave if
its density with respect to a Poisson distribution is discrete
log-concave. Thinning also conserves the class of ultra log-
concave distributions [9].
The thinning operation allow us to state and prove the Law

of Thin Numbers in various versions [8].
Theorem 1: Let P be a distribution on N0 with mean �.

Then T1=n (P �n) converges pointwise to Po (�) as n ! 1:
If P is an ultra log-concave distribution on N0 then

H
�
T1=n (P

�n)
�
! H (Po (�)) ; as n!1;

where P �n denote the n-fold convolution of P: If the diver-
gence D (PkPo (�)) is �nite then

D
�
T1=n (P

�n) kPo (�)
�
! 0; as n!1:



The main aim of this paper is to develop techniques that
allow us to give lower bounds on the rate of convergence in
the Law of Thin Numbers.

III. EXISTENCE OF MINIMUM INFORMATION
DISTRIBUTIONS

Let X be a random variable for which the moments of order
1; 2; :::l exist. We shall assume that E (X) = �. We are in-
terested in minimizing information divergence D (XkPo (�))
under linear conditions on the moments of X and derive
conditions for a minimum divergence distribution to exist.
For the results we shall derive later it will be convenient that
we calculate moments with respect to the Poisson-Charlier
polynomials, which are given by the following de�nition.
De�nition 2: The Poisson-Charlier polynomial of order k

is given by

Pk (x) =
�
�kk!

��1=2 kX
l=0

�
k

l

�
(��)k�l xl:

The Poisson-Charlier polynomials are characterized as nor-
malized orthogonal polynomials with respect to the Poisson
distribution Po (�) :
Lemma 3: For some �xed set (h1; � � � ; hl) 2 Rl, let K

be the convex set of distributions on N0 for which the �rst
l moments are de�ned and which satis�es the following
conditions

EP [Pk (X)] = hk ; for k = 1; 2; � � � ; l � 1; (2a)
EP [Pl (X)] � hl : (2b)

If K 6= ? then the minimum information projection of Po (�)
exists.
Theorem 4: Let C be the set of distributions on N0 for

which the �rst l moments are de�ned and satisfy the following
equations

E [Pk (X)] = hk for k = 1; 2; � � � ; l : (3)

Assume that C 6= ? and l � 2: We shall consider the
following three cases:
1) hk = 0 for k < l and hl > 0:
2) hk = 0 for k < l and hl < 0:
3) hk = 0 for k < l � 1 and hl�1 > 0:
In case 1 no minimizer exists and infC D (PkPo (�)) =

0. In case 2 and 3 there exists a distribution P � in C that
minimizes D (PkPo (�)).
Proofs can be found in the appendix. For our applications

it is easy to check that the set C de�ned in Theorem 4 is non-
empty, but in general it may be dif�cult to determine simple
necessary and suf�cient conditions for C 6= ? in terms of the
set of speci�ed moments.

IV. LOWER BOUNDS

Let X be a random variable with values in N0 and with
mean �: Then the divergence D (XkPo (�)) is minimal if

the distribution of X is element of the associated exponential
family, i.e.

D (XkPo (�)) � D (Po (�) kPo (�)) = �
�
�

�
� 1� log �

�

�
:

For � � � we get

D (XkPo (�)) � (�� �)2

2�
=
E [P1 (X)]

2

2
: (4)

We conjecture that a result similar to (4) holds for any order
of the Poisson-Charlier polynomial.
Conjecture 5: For any random variable X with values in

N0 and for any k 2 N we have

D (XkPo (�)) � E [Pk (X)]
2

2
(5)

if E [Pk (X)] � 0:
We have not been able to prove this conjecture but we can

prove the following weaker result.
Theorem 6: For any random variable X with values in N0

and any k 2 N there exists " > 0 such that for E [Pk (X)] 2
[�"; 0] inequality (5) holds.

Proof: De�ne c = E [Pk (X)] : For c �xed the diver-
gence D (XkPo (�)) is minimal for the distribution Po� given
by

Po� (x) =
exp (�� � Pk (x))

Z (�)
� Po (�; x) ; (6)

where Z is the partition function

Z (�) =
1X
x=0

exp (�� � Pk (x)) � Po (�; x)

and again � � 0 is determined by the condition c =
E [Pk (X)] : We observe that Z (0) = 1 and that Z (�) > 0:
From now on we shall consider c as a function of �:
We need the derivative of the partition function

Z 0 (�) = �
1X
x=0

Pk (x) � Po� (x) � Z (�) = �c � Z (�)

and see that Z 0 (�) � 0; and therefore Z (�) � 1 for all � � 0:
We also see that c = �Z 0 (�) =Z (�) : The divergence can be
written as

D (Po�kPo (�)) = EPo�
�
log

dPo�
dPo

�
= ��c� log (Z) :

We have to prove that D � c2=2; which is obvious for
� = 0: We take derivatives with respect to � and get

dD

d�
= �c� � dc

d�
� Z

0

Z
= �� dc

d�
;
d

d�

�
c2

2

�
= c

dc

d�
:

Therefore it is suf�cient to prove that �� dcd� � c
dc
d� ; which is

equivalent to �c � � because dc
d� < 0: If c 2 [�"; 0] then the

theorem only has to be proved for � 2 [0; "] : Now �c = Z0

Z
� Z 0; so it is suf�cient to prove that Z 0 (�) � �: For � = 0 it
is obvious so it is suf�cient to prove that Z 00 � 1: For � = 0
we have Z 00 (0) = EPo(�)

h
(P2 (X))

2
i
= 1: Therefore it is



suf�cient to prove that d
3Z
d�3 � 0 for � 2 [0; "] ; but if " is

chosen suf�ciently small then this is true because d3Z
d�3 (0) =

�EPo(�)
h
(P2 (X))

3
i
< 0 which is proved in the appendix.

Conjecture 5 can be proved for k = 2: A short version of
a much longer proof can be found in the appendix.
Theorem 7: For any random variable X with values in N0

then inequality (5) holds for k = 2 if E [P2 (X)] � 0:
V. ASYMPTOTIC LOWER BOUNDS

This section combines results from Section II, III, and IV.
Let � denote the �rst value of k such that E [Pk (X)] 6= 0 and
put c = E [P�(X)]. Lower bounds on the rate of convergence
are essentially given in terms of � and c:
First we shall see how the factorial and Poisson-Charlier

moments scale under convolution and thinning. Use of Van-
dermonde Identity for factorials combined with equation (1)
leads to the following lemma.
Lemma 8: Let X1; X2; ::: be a sequence of independent

identically distributed discrete random variables all distributed
like X: If  = E

�
Xk0

�
then

E

264
0@T1=n

0@ nX
j=1

Xj

1A1Ak
375

=

8>>><>>>:
�k ; for k < � ;
�k + ��k

n��1 ; for k = � ;
��+1 + (n�1)(�+1)�(���)

2n�

+
E[Xk0+1]���+1

n� ;
for k = �+ 1:

The Poisson-Charlier moments satisfy

E

24Pk
0@T1=n

0@ nX
j=1

Xj

1A1A35
=

�
0 ; for k < � ;
E[Pk(X)]
nk�1

; for k = �; �+ 1:

We now present lower bounds on the rate of convergence
in the Law of Thin Numbers in the sense of information
divergence. The key idea is that we bound D(PkPo (�)) �
D(P �kPo (�)), where P � is the minimum information distri-
bution in a class containing P . Using the construction for P �
found in Section III, we often can �nd an explicit expression
for the right hand side
Theorem 9: Let X be a random variable with values in N0.

If E [P� (X)] � 0 then

n2��2D

0@T1=n
0@ nX
j=1

Xj

1APo (�)
1A � E [P� (X)]

2

2
: (7)

Proof: For k = � there exists " > 0 such that inequality
(5) holds when the condition in Theorem 6 is ful�lled. Now,

E

24P�
0@T1=n

0@ nX
j=1

Xj

1A1A35 = E[P�(X)]

n��1
2 [�"; 0]

for suf�ciently great values of n implying that

D

0@T1=n
0@ nX
j=1

Xj

1APo (�)
1A � 1

2

�
E[P�(X)]

n��1

�2
;

and asymptotic lower bound (7) follows.
If the distribution of X is ultra log-concave we automati-

cally have E [P� (X)] � 0; and we conjecture that the asymp-
totic lower bound is tight for ultra log-concave distributions.
A similar lower bound on rate of convergence can be

achieved even if E [P� (X)] > 0 but then it requires the
existence of a moment of higher order to �stabilize� the
moment of order �: Thus we shall assume the existence of
moments of all orders less than or equal to �+ 1:
De�ne t = n1��: Then

E

24P�
0@T1=n

0@ nX
j=1

Xj

1A1A35 = t � E [P� (X)]
E

24P�+1
0@T1=n

0@ nX
j=1

Xj

1A1A35 = t �
��1 � E [P�+1 (X)] :

Let P �t denote the minimum information distribution satisfying

EP�
t
[P�] = a and EP�

t
[P�+1] = b

where

a = t � E [P� (X)] and b = t
�

��1 � E [P�+1 (X)] :

Then P �t is an element in the exponential family and

P �t (j)

Po (�; j)
=
exp (�1P� (j) + �2P�+1 (j))

Z (�1; �2)

where Z (�1; �2) is the partition function and �1 and �2 are
determined by the conditions. Thus

D (P �t kPo (�))

=
1X
x=0

P �t (x) log
exp (�1P� (x) + �2P�+1 (x))

Z (�1; �2)

=
1X
x=0

(�1P� (x) + �2P�+1 (x))P
�
t (x)� logZ (�1; �2)

= �1tE [P� (X)]+�2t
�

��1 �E [P�+1 (X)]� logZ (�1; �2) :

Therefore
d

dt
D (P �t kPo (�)) =

�
da
dt
db
dt

���� @D
@a
@D
@b

�
where (� j �) denotes the inner product. Thus

d2

dt2
D (P �t kPo (�))

=

 
td

2a
dt2

td
2b
dt2

����� t�1 @D@at�1 @D@b

!
+

 
da
dt
db
dt

����� @2D
@a2

@2D
@a@b

@2D
@b@a

@2D
@b2

����� da
dt
db
dt

!

! E [P� (X)]
@2D

@a2
E [P� (X)] = E [P� (X)]

2
;



where the physics notation (~u j A j ~v) for (~u j A~v) is used
when A is a matrix. Hence,

lim inf
n!1

n2��2D

0@T1=n
0@ nX
j=1

Xj

1APo (�)
1A

� lim inf t�2D (P �t kPo (�)) �
E [P� (X)]

2

2
:

VI. DISCRETE AND CONTINUOUS DISTRIBUTIONS
The �-thinning T�(P ) of a distribution P on N0 is

also a distribution on N0. We can extend the thinning
operation for distributions P of random variables Y on
N0=n = f0; 1n ;

2
n : : :g; by letting T�(P ) be the distribution

of 1
n

PnY
j=1Bj , where the Bj are as before. More generally,

starting with a random variable Y with distribution P on
[0;1), let Pn denote the uniformly quantized version of P
supported on N0. It is easy to see that T�(Pn) converges to
the distribution of �Y as n!1. In this sense, thinning can
be interpreted as a discrete analog of the scaling operation for
continuous random variables.
Let �

�
�; �2

�
denote the distribution of a Gaussian random

variable with mean � and variance �2: We are interested in a
lower bound on D

�
Xk�

�
�; �2

��
in terms of the variance of

X; where X is some random variable. We shall assume that
Var (X) � �2: First we remark that

D
�
Xk�

�
�; �2

��
= D

�
aX + bk�

�
a�+ b; a2�2

��
for real constants a and b: The constants a and b can be chosen
so that a�+ b = a2�2: Our next step is to discretize

D
�
aX + bk�

�
a�+ b; a2�2

��
� D

�
baX + bckPo

�
a2�2

��
:

Next we use Theorem 7 to get

D
�
baX + bckPo

�
a2�2

��
� E [P2 (baX + bc)]2

2
=

1

4

�
Var baX + bc

a2�2
� 1
�2
=
1

4

0@Var
�
baX+bc

a

�
�2

� 1

1A2

:

Finally we use that Var (baX + bc =a)! Var (X) for n!1
to get

D
�
Xk�

�
�; �2

��
�

�
Var(X)
�2 � 1

�2
4

=
E [H2 (X � E [X])]2

2
;

where H2 is the second Hermite polynomial. This inequality
can also be proved by a straightforward calculation in the
exponential family of Gaussian distributions. Following the
same kind of reasoning we get the following new and non-
trivial result:
Theorem 10: For any random variable X with mean 0 and

variance 1 and for any l 2 N there exists " > 0 such

D
�
Xk�

�
�; �2

��
� E [H2l (X)]

2

2

if E [H2l (X)] 2 [�"; 0] :
If Conjecture 5 holds then the condition E [H2l (X)] 2

[�"; 0] in Theorem 10 can be replaced by the condition
E [H2l (X)] � 0: The case l = 1 has been discussed above
and the case k = 2 has also been proved [10, Thm. 7].
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VII. APPENDIX: TECHNICAL LEMMAS AND PROOFS
Proof of Lemma 3: Let ~G 2 Rl�1 be a vector and let C~G

be the set of distributions satisfying the following inequalities

E

"
Pl (X)� hl �

X
k<l

Gk � (Pk (X)� hk)
#
� 0:

We see that the set C~G is closed because Pl (x) � hl �P
k<lGk (Pk (x)� hk) ! 1 for x ! 1. Therefore the

intersection K =
T
~G2Rl�1 C~G is closed. There exists a

distribution P � 2 K such that the information divergence
D (PkPo (�)) is minimal because K is closed. �
Proof of Theorem 4:
Case 1. If a minimizer existed it would be an element of

the corresponding exponential family, but the partition function
cannot be �nite because hl > 0 and l � 2:
For cases 2 and 3 let P = P � be the minimum information

distribution satisfying the conditions (2).
Case 2. Assume that hk = 0 for k < l and hl < 0:

Assume also that EP� [Pl (X)] < hl : De�ne P � = �P � +



(1� �) Po (�) : Then the conditions (2a) holds for P = P �

and

EP � [Pl (X)] = �EP� [Pl (X)]

+ (1� �)EPo(�) [Pl (X)] = �EP� [Pl (X)] :

Thus EP � [Pl (X)] = hl if � = hl
EP� [Pl(X)]

2 ]0; 1[ : Therefore
P � satis�es (3) but D

�
P �kPo (�)

�
� �D (P �kPo (�)) <

D (P �kPo (�)) and we have a contradiction.
Case 3. Now, assume that hk = 0 for k < l�1 and hl�1 >

0: Moreover, assume that EP� [Pl (X)] < hl. Using the result
of case 1 we see that there exists a distribution ~P for which
the l �rst moments exist and that the �rst l�1 moments satisfy
(2a) but with D

�
~PkPo (�)

�
< D (P �kPo (�)) : De�ne P � =

�P �+(1� �) ~P (�) : Then the conditions (2a) holds for P =
P � and

EP � [Pl (X)] = �EP� [Pl (X)] + (1� �) �E ~P [Pl (X)] :

Therefore EP � [Pl (X)] � hl for � suf�ciently close to 1
but D

�
P �kPo (�)

�
� �D (P �kPo (�)) < D (P �kPo (�)) and

we have a contradiction. Therefore P � satis�es E [Pl (X)] =
hl: �
Proof of Theorem 7: First we note that P2 (x) � �2�1=2

for any x 2 N0: Hence, E [P2 (X)] 2
�
�2�1=2; 0

�
: Then,

according to the proof of Theorem 6 it is suf�cient to prove
that d

3Z
d�3 � 0 for � 2

�
0; 2�1=2

�
. The function � y d2Z

d�2 =P1
x=0 P2 (x)

2
exp (��P2 (x)) Po (�; x) is convex, so it is

suf�cient to prove the inequality d2Z
d�2 � 1 for a single value

� = �0 � 2�1=2: Consider the function f (x) = x2 exp (��x)
with f 0 (x) = (2� �x)x exp (��x) :The function f is de-
creasing for x � 0; has minimum for x = 0; increases
for 0 � x � 2=�; has a local maximum 4 exp (�2) =�2 in
x = 2=� and decreases for x � 2=�: We solve the equation
4 exp(�2)

�20
= 1 and obtain �0 = 2=e = 0:735 76 � � � and note

that �0 � 2�1=2: We see that it is suf�cient to prove thatP1
x=0 P2 (x)

2
exp (��0P2 (x)) Po (�; x) � 1.

The graph of x ! P2 (x) is a parabola and we have
P2 (�) = P2 (�+ 1) = �2�1=2: For all values x 62 ]�;�+ 1[
we have f (h (x)) � max

�
1; f

�
�2�1=2

�	
= 1 and x can

only assume integer values so at most one value of x will
contribute to the mean value with a value greater that 1. A
careful inspection of different cases will show that the single
value of x that may contribute to the mean with greater than
1 will be averaged out with some other value of x: �
Lemma 11 (Khoklov [11]): 1

Pk (x)Pl (x) = (�1)k+l
�
�k+l

k!l!

�1=2 k+lX
m=0

cmPm (x)

where cm as a function of k; l and � is given by
mX
n=0

Pk
�=0

Pl
�=0

�
k
�

��
l
�

�
�n�n (�+ � � n)m (�1)�+�

n!�n (m!�m)
1=2

:

1The original formula by Khokhlov [11] contains an error in that the factor
(�1)k+l is missing but his proof is correct.

Lemma 12: For a Poisson random variable X with mean
value � we have E

h
Pk (X)

3
i
> 0 for any k 2 N:

Proof: According to Lemma 11 we have

E
h
(Pk (X))

3
i
=

E

" 
(�1)k+k �

k

k!

k+kX
m=0

cmPm (X)

!
Pk (X)

#
=
�k

k!
ck

where ck is de�ned in Lemma 11. Therefore it is suf�cient to
prove that
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for all 0 � n � k and that there exists at least one value of
n such that the left hand side is positive. For any n satisfying
0 � n � k we can use the Vandermonde Identity for factorials
to get
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Now
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This sum is only non-zero if a = k � n: Similarly the sumPk
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Thus c = k � 2 (k � n) = 2n � k and the condition c � 0
implies that n � k=2: Hence
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which is always non-negative and it is positive if k=2 � n � k:


